
SDSS: Peta-scale Storage for Very High
End Computing

Collaborative Research
College of Computing

Georgia Institute of Technology

Computer Science Department
University of New Mexico

Karsten Schwan
Arthur Maccabe
Patrick Bridges

Greg Eisenhauer
Patrick Widener

Matt Wolf
and

Ron A. Oldfield, Sandia National Laboratories

Research Challenges:
- # clients vs. limited # nodes in I/O partition
- balance b/w utilization across system for scalability
=> address mismatch between current

point-to-point, file-based I/O and
the actual needs of data-intensive HPC applications

Solution Approach: LWFS and I/O Graphs

Rich application(-specific), customizable I/O structure:

LWFS: Light Weight File System:
- asynchronous or off-line processing of file/storage actions

I/O Graphs:
- explicitly represent I/O tasks and their

mapping to MPP and I/O nodes

Key Elements
of Solution Approach

Addressing scalability challenges:
- prohibit system-imposed functions requiring O(n) functions

(n = #client nodes)
- prohibit data structures of size O(n)
(e.g., no connection-based mechs.)

New tools to `upgrade’ from lightweight nature of I/O system:
- deal with differing storage organizations
- enhance metadata associated with I/O data and actions
- ensure performance and QoS requirements of I/O

Proposed SDSS System
• I/O described as ‘structured events’ manipulated by dynamic

flow graphs (i.e., I/O Graphs)

• I/O Graphs ‘connect’ simulation components with I/O
subsystem; created, configured, removed dynamically;
mapped automatically

• I/O Graph nodes implement application-specific I/O services
(e.g., data staging); managed automatically

• I/O Graphs are integrated with LWFS, in fact, they perform
some of the actions required by LWFS (e.g., consistency
management done by transaction managers)

• I/O Graphs can operate asynchronously and concurrently
(e.g., use of MetaBots)

• SDSS extends, not replaces, existing back-end
storage/file systems (e.g., LWFS) and HPC
transport protocols (e.g., portals)

• SDSS uses efficient binary representation of
metadata (e.g., PBIO)

• SDSS interoperates with other systems (e.g.,
Lustre)

• SDSS will run on realistic machines (e.g.,
ORNL/Sandia machines) with realistic
applications (e.g., fusion modeling, ORNL)

Implementation

SDSS Team Capabilities

• UNM: Maccabe, Bridges, Widener
• Sandia: Oldfield (LWFS)

• Georgia Tech: Schwan, Eisenhauer, Wolf
• (ORNL: Klasky (Fusion Modeling))

